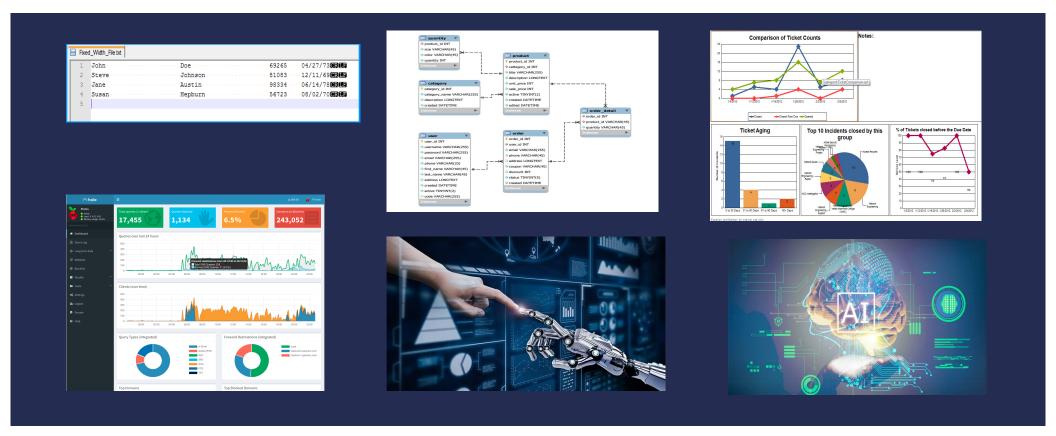


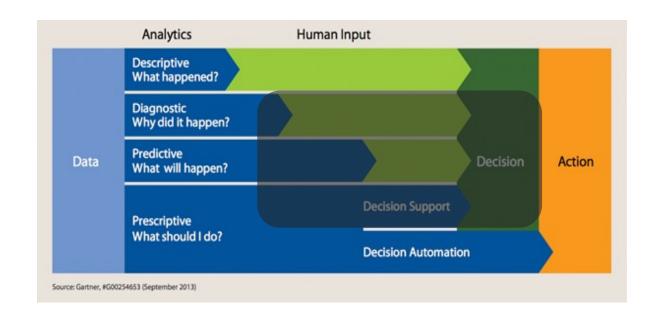
Using Data for Evidence & Evaluation

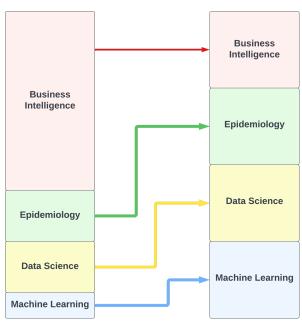
Kristina Crane, Chief Operating Officer, Chief Strategy Officer Sawyer Koops, Director of Data Science

It Takes a Village = A Coalition

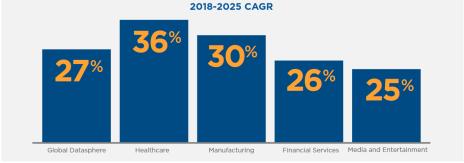
Engagement Through Collaboration, Communication, and Data






A look back

Where are we now?



Opportunity

Healthcare data

- Data tailwinds: medical record keeping + compliance & regulatory requirements
- Lots of data: "Hospitals produce an average of 50 petabytes of data each year with as much as 97% of that data going unused."
- ...And growing

Immunization data

- Unique qualities:
 - Touchpoint for healthy people
 - Longitudinal
 - (Potentially) indicative of behavior/sentiment

Source: Data Age 2025, sponsored by Seagate, Nov 2018

With great power...

Immunization Information systems are the gold standard of immunization data ...but have limitations (deduplication, jurisdictional requirements, etc.)

Impacts can include:

Case Study 1

The case of the missing data

Jurisdiction: Missing 19% race & 39% ethnicity data

Options evaluated:

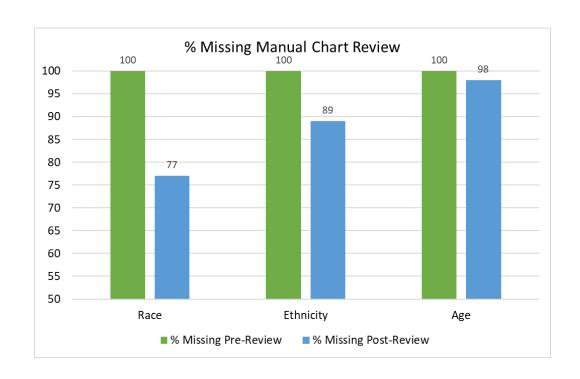
- 1. Omission
- 2. Imputation
 - Estimation of missing values using non-missing across a series of synthetic datasets
 - Can reduce bias
 - Increase statistical power
- 3. Machine Learning
 - Supervised vs. semi-supervised
- 4. Current method
 - Manual review?

Results - MICE

- 1. 10 person-hours
- 2. 4 computer-hours
- 3. Effectiveness
 - 1. Model fit: ideal
 - 2. Extensibility: good
 - 3. Scalability: good

Race/Ethnicity	Pre-MICE (%)	Post-MICE (%)
White	88.86	88.76
Black/African American	3.47	3.48
Asian	0.87	0.86
American Indian or Alaskan Native	0.40	0.404
Native Hawaiian or PI	0.10	0.102
Multiracial	0.17	0.18
Other	6.12	6.21
Hispanic/Latino	1.95	3.2
Not Hispanic/Latino	98.05	96.8
Age	Pre-MICE	Post-MICE
Mean	45.14336	45.14408
Standard Deviation	25.4999	25.51
Median (Interquartile Range)	46	46

Results - Ethnicolr


- 1. 8 person-hours
- 2. 0.1 computer-hours
- 3. Effectiveness
 - 1. Model fit: poor
 - 2. Extensibility: good
 - 3. Scalability: moderate

Race/Ethnicity	Pre-Ethnicolr(%)	Post-Ethnicolr(%)
White	80	88
Black/African American	3.4	5.8
Asian	0.75	2.1
American Indian or Alaskan Native	0.46	N/A
Native Hawaiian or PI	0.10	N/A
Multiracial	0.32	N/A
Other	15	4.3
Hispanic/Latino	2.1	4.3
Not Hispanic/Latino	98	96

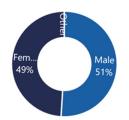
- 1. 12 person-hours
- 2. 1 computer-hour
- 3. Effectiveness
 - 1. Model fit: ideal
 - 2. Extensibility: moderate
 - 3. Scalability: poor

Benefits

- 1. Reduce bias, increased statistical power
- 2. Greater confidence in decision making
- 3. Targeted allocation of resources & standardized measurement
- 4. Harness full immunization ecosystem to inform outreach
- 5. Foster collaboration

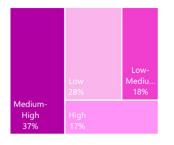
Conclusions

- 1. Not all methods of addressing missing data are created equally
- 2. Multiple imputation in immunization data could have utility in improving demographic data quality post-hoc
 - a. Needs to be used carefully. Test assumptions, strict model diagnostic procedures.
- 3. Strong coalitions & partnerships between providers and Public Health will maximize leverage of these techniques
- 4. No substitute for improving data quality at entry


Case Study 2

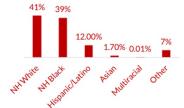
Initiating HPV vaccination at age 9-10: A pilot example using Immunization Information Systems

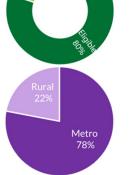
Methods:


- Retrospective cohort ages 9-18 years (n=388,531)
- "Follow up" through October 1, 2023
- Primary Exposure: Age at HPV series initiation
- Outcome: HPV vaccine series completion. Series completion defined as 2 recorded doses for those whose first dose was administered before their 15th birthday and 3 recorded doses for those whose first dose was administered on or after their 15th birthday.
- Statistical Analyses: Complete case analysis. Multivariable logistic regression using general linear models. Results presented as unadjusted and adjusted odds ratios with 95% confidence intervals, all to two significant digits.
- Covariates: age, race, ethnicity, gender, urbanicity, VFC eligibility

49% Female

Halflived in a highmedium to high SVI county


A quarter were ages 11-12

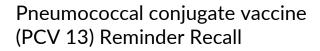


One third is Non-Hispanic Black

Over threequarters live in an urban county

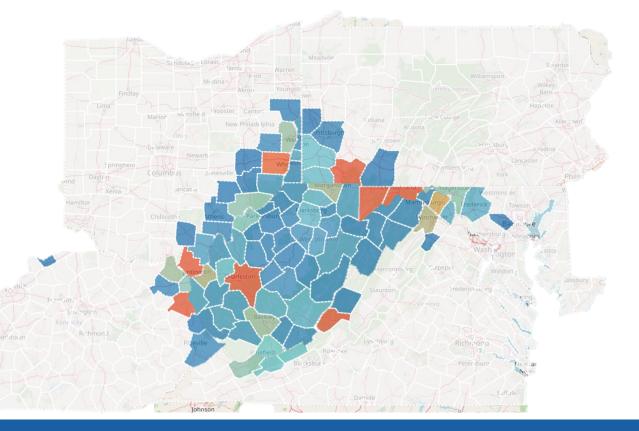
Association between individual characteristic and odds of series completion

Characteristic	Reference Group	Unadjusted Odds Ratio [95% CI]	Adjusted* Odds Ratio [95% CI]
Initiated at age 9-10 years	Initiated at 11-12 years	1.38 (1.28, 1.48)	1.39 (1.30, 1.50)


^{*}n=388,531. Adjusted odds ratios control for age, sex, race, ethnicity, urbanicity, SVI, and VFC eligibility.

Interpretation

- Non-Hispanic Black individuals, VFC eligible, and high SVI counties were 7-13% less likely to complete the series compared with their counterparts.
- Females were slightly more likely to complete the series
- No differences by urbanicity
- Those who initiated the HPV series at 9-10 years of age were 40% more likely to complete the series compared with those who initiated at 11-12 years (1.3, 1.5))



Case Study 3

One monthly cohort, n=4,148

Results: 35.4% patients received any vaccination within 45 days of recall

The future

